If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20g^2-4g-8=0
a = 20; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·20·(-8)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{41}}{2*20}=\frac{4-4\sqrt{41}}{40} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{41}}{2*20}=\frac{4+4\sqrt{41}}{40} $
| 7y-6=2y | | 2(3x-4)=x | | n-3/4=7 | | 3n-5=5n-20 | | 2(x-8)=x-5 | | 8b=-56 | | 8(3w+6)/3=-6 | | 2(x+19)=x+13 | | 13/x+8=41 | | 2(2x+16)=x+14 | | -4+3×=-12+9x | | 10m+m=100 | | 15t-3=13t-5 | | -7u=17.5 | | -4+3x=-12+9× | | 7x+14=9x-1 | | 13*x=156 | | t÷5-4=13 | | 3x-3=2(x+2 | | z10+7=4 | | 4x=6(x-3 | | 3m+5=14m= | | (x-2)/8=-6 | | 5-x/9=-5 | | 9x+7-4x=3x+x+11 | | 2c+5c=c-8 | | 5x-12=88. | | 19±k=4 | | 7m+5=54m= | | 6m+4=52m= | | 4y+y/2+y/2+3y/2=1647 | | 5n=4n=11 |